C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Discrete Mathematics

Subject Code: 4SC05DMC1			Branch : B.Sc. (Mathematics)	
Semo	ester: 5	Date : 29/04/2016	Time : 2:30 To 5:30	Marks : 70
Instru (1 (2 (1) (4)	uctions: 1) Use of Pro 2) Instructior 3) Draw neat 4) Assume su	ogrammable calculator & any ns written on main answer bo diagrams and figures (if neo uitable data if needed.	y other electronic instrument book are strictly to be obeyed. cessary) at right places.	is prohibited.
Q-1 a) b) c) d)	Attempt the Define: Equ Draw the Ha Find the leas Define: (i) C	e following questions: ivalence relation. asse diagram of $\langle S_8, \leq \rangle$. st and greatest element in the Complement of Fuzzy subset	e poset $\langle N, D \rangle$, if they exist. (ii) Characteristic function	(14)
e) f) g)	Define: Set of atoms Prove that $ab + ab' + a' = 1$. Let $\langle B, *, \oplus, ', 0, 1 \rangle$ be a Boolean algebra and $a, b, c \in B$ then show that $a * (a' \oplus b) = (a * b) \oplus (c * b * a) = a * b$.			
Attemp	ot any four qu Attempt all	estions from Q-2 to Q-8		
a)	Let $\langle L, *, \oplus, \rangle$	(,0,1) be a complemented lat	ttice and for any $a, b \in L$ then	prove that (07)
b)	$a \le b \Leftrightarrow a *$ For the POS	$b' = 0 \Leftrightarrow b' \le a' \Leftrightarrow a' \oplus b = 1$ ET \langle \{2,3,6,12,24,36\}, D \rangle		(07)
	 Draw the Find max Find Great Find Low Find Upp 	Hasse diagram. imal elements and minimal entest element and least element er bounds of {3,6} er bounds of {6,12}	elements ent, if exists	

Page 1 of 3

Q-3 Attempt all questions

- a) Prove that $\langle P(\{a,b,c\}), \subseteq \rangle$ is a lattice and draw the Hasse diagram of it. (07)
- **b**) Let be a lattice and $a, b, c \in L$, Show that the following are equivalent. (07)

i)
$$a*(b\oplus c) = (a*b)\oplus (a*c)$$

ii) $a\oplus (b*c) = (a\oplus b)*(a\oplus c)$

Q-4 Attempt all questions

a) Determine whether the Boolean expressions given below are equivalent from their (10) valuation tables.

 $f(x, y, z) = (x * y) \oplus (y * z'); \quad g(x, y, z) = (x' * y * z') \oplus (x * y * z') \oplus (x * y * z)$

b) Obtain circuit diagram representation for the Boolean expression (04) $g(x, y) = (x * y') \oplus (x' * y)$

Q-5 Attempt all questions

- **a**) For a lattice $\langle S_{90}, D \rangle$, answer the following questions: (07)
 - i) Find cover of each element and draw the Hasse diagram
 - ii) Find lower bound, upper bound, greatest lower bound, least upper bound of $A = \{3, 5, 6\}$
 - iii) Find the least and greatest element of it.
- **b**) Obtain cube array representation for Boolean expression h(x, y, z) = xy + y' + z' (07)

Q-6 Attempt all questions

- a) Find the minimal sum of products expression for the function (05) f(a,b,c) = ab'c' + abc' + abc' + ab'c + ab'c' by using Karnaugh map method.
- **b**) Obtain the SOP canonical form of the Boolean expression by algebraic method in three (05) variables $\alpha(x, y, z) = y' + [z' + x + (yz)'](z + x'y)$.
- c) Obtain the POS canonical form of the Boolean expression by algebraic method in three (04) variables $\alpha(x, y, z) = (x + z)y$.

Page 2 of 3

Q-7 Attempt all questions

a) Simplify the circuit given in following figure using Boolean identities.

(07)

(14)

- 1) $\underline{A} \cup \underline{B}$ 2) $\underline{A} \cdot \underline{B}$ 3) $\underline{A} + \underline{B}$ 4) $\underline{A} \underline{B}$ 5) $\underline{A} \cap \underline{B}$ 6) $(\underline{A}')'$ 7) \underline{B}'
- Q-8 State and prove Stone's representation theorem.

Page 3 of 3

